教學(xué)目標(biāo)
1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.
(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.
(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點.
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.
2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運算等方面的能力有所提高.
(1)對函數(shù)記號
(2)在求函數(shù)定義域中注意運算的合理性與簡潔性.
3.通過函數(shù)定義由變量觀點向映射觀點的過渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
(2)重點難點分析
本小節(jié)的重點是在映射的基礎(chǔ)上理解函數(shù)的概念.,主要包括對函數(shù)的定義,表示法,三要素的作用的理解與認(rèn)識.教學(xué)難點是函數(shù)的定義和函數(shù)符號的認(rèn)識與使用.
①由于學(xué)生在初中已學(xué)習(xí)了函數(shù)的變量觀點下的定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)并不陌生,所以在高中重新定義函數(shù)時,重要的是讓學(xué)生認(rèn)識到它的優(yōu)越性,它從根本上揭示了函數(shù)的本質(zhì),由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體,讓學(xué)生能主動將函數(shù)與函數(shù)解析式區(qū)分開來.對這一點的認(rèn)識對于后面函數(shù)的性質(zhì)的研究都有很大的幫助.
②在本節(jié)中首次引入了抽象的函數(shù)符號
2.教法建議
(1)高中對函數(shù)內(nèi)容的學(xué)習(xí)是初中函數(shù)內(nèi)容的深化和延伸.深化首先體現(xiàn)在函數(shù)的定義更具一般性.故教學(xué)中可以讓學(xué)生舉出自己熟悉的函數(shù)例子,并用變量觀點加以解釋,教師再給出如:
(2)對函數(shù)是三要素構(gòu)成的整體的認(rèn)識,一方面可以通過對符號
(3)關(guān)于對分段函數(shù)的認(rèn)識,首先它的出現(xiàn)是一種需要,可以給出一些實際的例子來說明這一點,對自變量不同取值,用不同的解析式表示同一個函數(shù)關(guān)系,所以是一個函數(shù)而不是幾個函數(shù),其次還可以舉一些數(shù)學(xué)的例子如
教學(xué)設(shè)計方案
2.2 函數(shù)
教學(xué)目標(biāo):
1.理解函數(shù)的概念,了解函數(shù)三要素.
2.通過對函數(shù)抽象符號的認(rèn)識與使用,使學(xué)生在符號表示方面的能力得以提高.
3.通過函數(shù)定義由變量觀點向映射觀點得過渡,使學(xué)生能從發(fā)展與聯(lián)系的角度看待數(shù)學(xué)學(xué)習(xí).
教學(xué)重點難點:重點是在映射的基礎(chǔ)上理解函數(shù)的概念;
難點是對函數(shù)抽象符號的認(rèn)識與使用.
教學(xué)用具:投影儀
教學(xué)方法:自學(xué)研究與啟發(fā)討論式.
教學(xué)過程:
一、復(fù)習(xí)與引入
今天我們研究的內(nèi)容是函數(shù)的概念.函數(shù)并不象前面學(xué)習(xí)的集合,映射一樣我們一無所知,而是比較熟悉,所以我先找同學(xué)說說對函數(shù)的認(rèn)識,如函數(shù)是什么?學(xué)過什么函數(shù)?
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
學(xué)生舉出如
提問1.
(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做
教師由此指出我們爭論的焦點,其實就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點,將它完善與深化.
二、新課
現(xiàn)在請同學(xué)們打開書翻到第50 頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2函數(shù)
一、函數(shù)的概念
1.定義:如果A,B都是非空的數(shù)集,那么A到B的映射
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合A,B必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學(xué)生試回答剛才關(guān)于
此時學(xué)生可以清楚的看到
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋
從映射角度看可以是
從剛才的分析可以看出,映射觀點下的函數(shù)定義更具一般性,更能揭示函數(shù)的本質(zhì).這也是我們后面要對函數(shù)進(jìn)行理論研究的一種需要.所以我們著重從映射角度再來認(rèn)識函數(shù).
3.函數(shù)的三要素及其作用(板書)
函數(shù)是映射,自然是由三件事構(gòu)成的一個整體,分別稱為定義域.值域和對應(yīng)法則.當(dāng)我們認(rèn)識一個函數(shù)時,應(yīng)從這三方面去了解認(rèn)識它.
例1 以下關(guān)系式表示函數(shù)嗎?為什么?
(1)
解:(1)由
(2) 由
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
例2 下列各函數(shù)中,哪一個函數(shù)與
(1)
解:先認(rèn)清
再看(1)定義域為
(4)
而(3)定義域是
求解后要求學(xué)生明確判斷兩個函數(shù)是否相同應(yīng)看定義域和對應(yīng)法則完全一致,這時三要素的又一作用.
(2)判斷兩個函數(shù)是否相同.(板書)
下面我們研究一下如何表示函數(shù),以前我們學(xué)習(xí)時雖然會表示函數(shù),但沒有相系統(tǒng)研究函數(shù)的表示法,其實表示法有很多,不過首先應(yīng)從函數(shù)記號
4.對函數(shù)符號
首先讓學(xué)生知道
例3 已知函數(shù)
分析:首先讓學(xué)生認(rèn)清
含義1:當(dāng)自變量
含義2:定義域中原象3的象
計算之后,要求學(xué)生了解
最后指出在剛才的題目中
三、小結(jié)
1. 函數(shù)的定義
2. 對函數(shù)三要素的認(rèn)識
3. 對函數(shù)符號的認(rèn)識
四、作業(yè):略
五、板書設(shè)計
|
2.2函數(shù) 例1. 例3. 一. 函數(shù)的概念 1. 定義 2. 本質(zhì) 例2. 小結(jié): 3. 函數(shù)三要素的認(rèn)識及作用 4. 對函數(shù)符號的理解 |
探究活動
函數(shù)在數(shù)學(xué)及實際生活中有著廣泛的應(yīng)用,在我們身邊就存在著很多與函數(shù)有關(guān)的問題如在我們身邊就有不少分段函數(shù)的實例,下面就是一個生活中的分段函數(shù).
夏天,大家都喜歡吃西瓜,而西瓜的價格往往與西瓜的重量相關(guān).某人到一個水果店去買西瓜,價格表上寫的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一個西瓜,稱重后店主說5元1角,1角就不要了,給5元吧,可這位聰明的顧客馬上說,你不僅沒少要,反而多收了我錢,當(dāng)顧客講出理由,店主只好承認(rèn)了錯誤,照實收了錢.
同學(xué)們,你知道顧客是怎樣店主坑人了呢?其實這樣的數(shù)學(xué)問題在我們身邊有很多,只要你注意觀察,積累,并學(xué)以至用,就能成為一個聰明人,因為數(shù)學(xué)可以使人聰明起來.
答案:
若西瓜重9斤以下則最多應(yīng)付4.5元,若西瓜重9斤以上,則最少也要5.4元,不可能出現(xiàn)5.1元這樣的價錢,所以店主坑人了.

